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Abstract

This paper describes a method to analyze the dynamic response of a multilayered piezoelectric material plate
containing some non-collinear cracks. It is assumed that the multilayers is composed of numerous laminae with

cracks located at the interface of composite layers. Based upon Fourier transforms and Laplace transforms, the
boundary value problem is reduced to a system of generalized singularity integral equations in the Laplace
transform domain. By utilized numerical Laplace inversion, the time-dependent full ®eld solutions are obtained in

the time domain. Numerical results are plotted to illustrate how the loading state and material non-homogeneity
in¯uence the stress ®elds and the electric displacement ®elds ahead of the crack tip. 7 2000 Elsevier Science Ltd.
All rights reserved.

Keywords: Multi layers; Piezoelectric materials crack; Interface; Dynamic fracture mechanics

1. Introduction

The development of piezoelectric composite materials o�ers great potential for use in advanced
structural applications. By taking advantage of the direct and converse piezoelectric e�ects, piezoelectric
composite structures can combine the traditional performance advantages of composite laminates along
with the inherent capability of piezoelectric materials to adapt to their current environment. As
piezoelectric materials are extensively used as actuators, sensors, sonar projector and medical ultrasonic
imaging applications, demand for advanced piezoelectric materials with high strength, high toughness,
low thermal expansion coe�cient, and low dielectric constant is increasing. In an e�ect to obtain a
piezoelectric material with these competing properties, considerable research has been directed toward
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the development of functionally graded or multilayered structure. However, a potential problem of
multilayered materials is that delamination (i.e., cracks growth between the layers) can occur during
processing.

E�orts have been made to establish electro-mechanical modeling of cracks in piezoelectric materials.
Suo et al. studied cracks either in piezoelectrics, or on interfaces between piezoelectrics and other
materials such as metal electrodes or polymer materials (Suo et al., 1992). They obtained closed form
solutions for in®nite piezoelectric medium containing a center crack. A new type of singularity is
discovered around interface crack tip. Four modes of square root singularities are identi®ed at the tip of
a crack in a homogeneous piezoelectric. Shindo and his colleagues studied the static anti-plane fracture
of a cracked piezoelectric strip (Shindo et al., 1990, 1996a, 1997). The dynamic representation formulas
and fundamental solutions for piezoelectricity were proposed (Khutoryansky and Sosa, 1995). Shindo
and his colleagues studied the dynamic response of a cracked dielectric medium under the action of
harmonic waves in a uniform electric ®eld (Shindo et al., 1996b). In the above-mentioned works, the
piezoelectric media are homogeneous. We have systematically studied the multiple crack problem in
non-homogeneous materials subjected to dynamic anti-plane mechanical loading (Wang et al., 1998a)
and dynamic in-plane mechanical loading (Wang et al., 1998b, 1999). In present work, we expand their
work to an electroelastic multiple crack problem for multilayered piezoelectric materials under
longitudinal shear. Laplace and Fourier transforms techniques are used to reduce the problem to the
solution of singular integral equations. Numerical calculations are carried out and the stress and electric
displacement intensity factors are shown graphically for some piezoelectric ceramics.

2. Solution of the problem

Fig. 1 illustrates the geometry of an N-layers multilayer of height h with properties that vary as a
function of coordinate y. �x, y, z� is the global coordinate system. yJ is the local coordinate of the Jth
layer. Throughout the paper, the subscript J is associated with the Jth layer, counted up from the lower
surface. The subscript j stands for the interface number between the Jth layer and the (J + 1)th layer.
Material properties are taken to be constants for each layer. The main axis of elasticity is parallel to x-
and y-axis. For the Jth layer, the density is rJ, thickness is hJ:

Under out-of-plane displacement wJ�x, yJ� and in-plane electric potential fJ�x, yJ� , the piezoelectric
boundary value problem has the form

�sxz �J� �C44 �J@wJ=@x� �e15 �J@fJ=@x �1�

Fig. 1. Geometry and coordinates of multilayer piezoelectric medium.
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�syz �J� �C44 �J@wJ=@yJ � �e15�J@fJ=@yJ �2�

Dx � �e15 �J@wJ=@xÿ �E11 �J@fJ=@x �3�

Dy � �e15 �J@wJ=@yJ ÿ �E11�J@fJ=@yJ �4�

The governing equations may be written in the form

�c44 �J
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� �e15 �J
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!
� 0 �6�

Denote the interlaminar stress �tyz�j as tj�x� and the interlaminar electric displacement �Dy�j as Dj�x�:
Adjacent two layers are either perfectly bonded or are partly separated by a crack. The crack length is
2aj, the crack center is located in the position of xj � cj: In the problem considered, it will be assumed
that the initial displacement, electric potential and velocity are zeros, and the boundary conditions have
the following form:

tj�x� � t0j�x� Dj�x� � D0j�x� cj ÿ aj < x < cj � aj �7�

for crack faces,

tyz�x, y � 0� � t0�x� Dy�x, y � 0� � D0�x� �8�

for lower surface of the piezoelectric medium and

tyz�x, y � h� � tN�x� Dy�x, y � h� � DN�x� �9�

for upper surface of the piezoelectric medium.
Referring to non-dimensional variable, �x � x=h, �yJ � yJ=h, �hJ � hJ=h, �aj � aj=h, �cj � cj=h, � �C44�J��C44

� e215=E11�J and the shear wave velocity �Cy�J �
����������������������
� �C44�JJ=rJ

q
� Applying Laplace transform over the time

variable t and Fourier transform to the space variable x, Eqs. (5) and (6) may be solved to give the
displacement and electric potential in each layer of the material:

w�J
ÿ

�x, �yJ, p
� � h

2p

��1
ÿ1

ÿ
eÿjsjlJ �yJA1J�s� � ejsjlJ �yJB1J�s�

�
eÿis �x ds �10�

f�J
ÿ

�x, �yJ, p
� � �e15=E11 �Jw�Jÿ �x, �yJ, p

�� jJ

ÿ
�x, �yJ, p

� �11�

j�J
ÿ

�x, �yJ, p
� � h

2p

��1
ÿ1

ÿ
eÿjsj �yJA2J�s� � ejsj �yJB2J�s�

�
eÿis �x ds �12�

Where the quantities with superscript � denote the Laplace transform, ``p'' is the Laplace transform
parameter, AmJ�s, p� and BmJ�s, p� are unknowns to be determined �m � 1, 2� i � �������ÿ1p

, and
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lJ �
������������������������������������
1�

h
ph=

ÿ
sCy

�
J

i 2r
�13�

Substituting (10)±(12) into (2) and (4), we have the stress and the electric displacement �t�j , D�j � at � �yJ �
�hJ� and �t�jÿ1, D�jÿ1� at � �yJ � 0�:8>><>>:

t�j � �x, p�
tjÿ1� �x, p�
D�j � �x, p�
Djÿ1� �x, p�

9>>=>>; �
1

2p

��1
ÿ1
jsj�KJ�s�

�8>><>>:
A1J�s, p�
B1J�s, p�
A2J�s, p�
B2J�s, p�

9>>=>>;eÿis �x ds �14�

where

�
KJ�s�

� �
2666664
ÿ
ÿ

�C44

�
JlJe

ÿjsjlJ �hJ
ÿ

�C44

�
JlJe

jsjlJ �hJ ÿ�e15�Jeÿjsj
�hJ �e15�Jejsj

�hJ

ÿ
ÿ

�C44

�
JlJ

ÿ
�C44

�
JlJ ÿ�e15�J �e15�J

0 0 �E11�Jeÿjsj
�hJ ÿ�E11 �Jejsj

�hJ

0 0 �E11�J ÿ�E11 �J

3777775 �15�

Applying Fourier transforms to (14) yields A1J, B1J, A2J, B2J in terms of t�j , D
�
j , t
�
jÿ1, D

�
jÿ1: The solution

for each layer can thus be determined in terms of t�j , D
�
j , t

�
jÿ1, D

�
jÿ1 by substituting A1J, B1J, A2J, B2J

back into (10) and (12). Upon doing so, Eqs. (10) and (12) become

(
w�J
ÿ

�x, �yJ
�

j�J
ÿ

�x, �yJ
� ) � h

2p

��1
ÿ1

1

jsj
�
HJ�s, p�

�T
0BBB@
��1
ÿ1

8>><>>:
tj��r�
Dj��r�
tjÿ1��r�
Djÿ1��r�

9>>=>>;eis�r d�r

1CCCAeÿis �x ds �16�

in which

�
HJ�s, p�

� �

266666666666666664
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ÿjsjlJ �yJ

�ÿ
�C44

�
JlJsinh

ÿ
jsjlJ �hJ

� 0

�
e15
E11

�
J

cosh
ÿjsjlJ �yJ

�ÿ
�C44

�
JlJsinh

ÿ
jsjlJ �hJ

� ÿ cosh
ÿjsj �yJ�

�E11 �Jsinh
ÿ
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�
ÿ cosh

ÿ
jsjlJ

ÿ
�yJ ÿ �hJ

��ÿ
�C44

�
JlJsinh

ÿ
jsjlJ �hJ

� 0

ÿ
�
e15
E11

�
J

cosh
ÿ
jsjlJ

ÿ
�yJ ÿ �hJ

��ÿ
�C44

�
JlJsinh

ÿ
jsjlJ �hJ

� cosh
ÿ
jsj
ÿ

�yJ ÿ �hJ
��

�E11 �Jsinh
ÿ
jsj �hJ

�

377777777777777775
�17�

The interface conditions imply that both displacements and electric potentials are continuous across the
bounded interface between two adjacent layers, i.e.

@w�J�1
ÿ

�x, �yJ�1 � 0
�
=@ �x � @w�J

ÿ
�x, �yJ � �hJ

�
= �@x out of crack �18�

@j�J�1
ÿ

�x, �yJ�1 � 0
�
=@ �x � @j�J

ÿ
�x, �yJ � �hJ

�
=@ �x out of crack �19�
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Applying Eqs. (16)±(18) and (19) show that

i

2p

��1
ÿ1

sgn�s�
� �

L�s��
j

�
M�s��

j

�
N�s��

j

�
eÿis �x

��1
ÿ1

n
t�jÿ1��r� D�jÿ1��r� t�j ��r� D�j ��r� t�j�1��r� D�j�1��r�

oT

eis�r d�rds � 0 �20�

The matrices de®ned in these equations are

�
L�s, p��j� ÿ

�
1 e15=E11
0 0

�
J

sinh
ÿ
jsjlJ �hJ

�ÿ
c44 � e215=E11

�
J
lJ
�

�
0 0
0 1

�
sinh

ÿ
jsj �hJ

�
�E11 �J

�21�

�
M�s, p��j�

�
1 e15=E11
0 0

�
J

tanh
ÿ
jsjlJ �hJ

�ÿ
c44 � e215=E11

�
J
lJ
ÿ

�
0 0
0 1

�
tanh

ÿ
jsj �hJ

�
�E11 �J

�

�
1 e15=E11
0 0

�
J�1

tanh
ÿ
jsjlJ�1 �hJ�1

�ÿ
c44 � e215=E11

�
J�1lJ�1

ÿ

�
0 0
0 1

�
tanh

ÿ
jsj �hJ�1

�
�E11 �J�1

�22�

�
N�s, p��j� �L�s, p��j�1 �23�

Eq. (20) may be satis®ed by de®ning new auxiliary functions cwj� �x� and cfj� �x� such that

sgn�s�
i

� �cj� �aj

�cjÿ �aj

�
cwj� �x�
cjj� �x�

�
eis �x d �r

�
��1
ÿ1

0B@�L�s��j
8<: t�jÿ1� �x�
D�jÿ1� �x�

9=;� �M�s��j
8<: t�j � �x�
D�j � �x�

9=;� �N�s��j
8<: t�jÿ1� �x�
D�jÿ1� �x�

9=;
1CAeis �x d �x �24�

Using the mechanical traction and electric charge conditions for upper surface and lower surface of the
medium, Eq. (24) can be written in matrix form

�
S�s, p�� ��1

ÿ1

�
S� �x�

	
eis �x d �x � sgn�s�

i

�
F�s�	ÿ �Fb�s�

	 �25�

with fF�s�g and fS� �x�g two vectors of 2(Nÿ 1� rows each�
F�s�	 �(� �c1� �a1

�c1ÿ �a1

cw1e
is�r d�r

� �c1� �a1

�c1ÿ �a1

cj1e
is �r d �r � � �

� �cNÿ1� �aNÿ1

�cNÿ1ÿ �aNÿ1
cw�Nÿ1�e

is �r d �r

� �cNÿ1� �aNÿ1

�cNÿ1ÿ �aNÿ1
cj�Nÿ1�e

is�r d�r

)T �26�
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�
S� �x�

	
� � t�1� �x� D�1� �x� � � � t�Nÿ1� �x� D�Nÿ1� �x�

	T �27�

In Eq. (25), fFb�s�g is a vector of 2(Nÿ 1� rows. Only the ®rst two elements and the last two elements in
fFb�s�g are non-zero, they are related to the boundary condition by

�
Fb1�s�

	 � �L1�s�
� ��1
ÿ1

�
t�0��r�
D�0��r�

�
eis �r d�r �28�

�
Fb�Nÿ1��s�

	 � �N�Nÿ1��s�� ��1
ÿ1

�
t�N��r�
D�N��r�

�
eis �r d�r �29�

and

�
S�s, p�� �

2666666664

M1 N1

L2 M2 N2

�
�
�
LNÿ2 MNÿ2 NNÿ2

LNÿ1 MNÿ1

3777777775
�30�

Eq. (25) is the relationship between interfacial shearing stresses/electric displacements and interfacial
auxiliary functions, and there are 2(Nÿ 1� equations in Eq. (25). For those interfaces with no crack, the
auxiliary function is zero, so the number of equations needed to be solved is twice the crack number.

Let the inverse of matrix �S�s�� be �T�s��: Referring to variable T n
m�s�, which denote the mth row and

the nth column of matrix �T�s, p��: Applying inverse Fourier transform to (25) yields8<: t�j � �x�
D�j � �x�

9=;�
8<: t�bj� �x�
D�bj� �x�

9=; � 1

2pi

XNÿ1
k�1

� �ck� �ak

�ckÿ �ak

0B@��1
ÿ1

sgn�s�
24T

�2kÿ1�
�2jÿ1� �s� T

�2k�
�2jÿ1��s�

T
�2kÿ1�
�2j� �s� T

�2k�
�2j� �s�

35eis� �rÿ �x� ds

1CA
(
cwk��r�
cfk��r�

)
d�r �31�

where8<: t�bj� �x�
D�bj� �x�

9=; � 1

2p

��1
ÿ1

sgn�s�
24T 1

�2jÿ1��s� T 2
�2jÿ1��s� T

�2Nÿ3�
�2jÿ1� �s� T

�2Nÿ2�
�2jÿ1� �s�

0 T 2
�2j��s� 0 T

�2Nÿ2�
�2j� �s�

35
(
Fb1�s�
Fb�Nÿ1��s�

)
eÿis �x ds �32�

In order to separate a singular part of the kernel in Eq. (31), the asymptotic behavior of the elements in
matrix �T�s�� for jsj41 must be examined. One can see from Eqs. (21)±(23) and (30) that as jsj41,
the only non-zero elements in �T�s�� are

T 2jÿ1
2jÿ1 �1� �

ÿ
�C44

�
j=2 �

ÿ
�C44

�
J

ÿ
�C44

�
J�1ÿ

�C44

�
J�
ÿ

�C44

�
J�1

�33�
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T 2j
2jÿ1�1� � � �e15 �j=2 �

�e15 �J
ÿ
E11 �C44

�
J�1��e15 �J�1

ÿ
E11 �C44

�
Jÿ�E11 �J��E11 �J�1��ÿ �C44

�
J�
ÿ

�C44

�
J�1
� �34�

T 2j
2j �1� � ÿ��E11 �j=2 � ÿ

�E11 �J�E11 �J�1
�E11 �J��E11�J�1

�35�

By de®ning �T
n

m�s� � T n
m�s� ÿ T n

m�1�, one can express Eq. (31) as follows8<: t�j � �x�
D�j � �x�

9=;�
8<: t�bj� �x�
D�bj� �x�

9=; � 1

p

XNÿ1
k�1

� �ck� �ak

�ckÿ �ak

0BB@��1
0

264 �T
�2kÿ1�
�2jÿ1� �s� �T

�2k�
�2jÿ1��s�

0 �T
�2k�
�2j� �s�

375sin s��rÿ �x� ds

1CCA
(
cwk��r�
cjk��r�

)
d�r� 1

2p

" ÿ
�C44

�
j � �e15�j

0 ÿ��E11 �j

# � �cj� �aj

�cjÿ �aj

1

�rÿ �x

(
cwj��r�
cjj��r�

)
d�r

As the second row of Eq. (36) does not contain any mechanical stress term, and �T
�2k�
�2j � �s� is independent

on p, the mechanical boundary conditions have no in¯uence on interfacial electric displacement.
Eq. (36) is singular integral equation having simple Cauchy-type kernels as the dominant singular

parts. Note that its fundamental function corresponds to the weight function of the Chebyshev
polynomial of the ®rst kind Tm��rj �: The crack-tip stress and electric ®eld can be characterized by
standard square-root singularity. According to the singular integral equation method, Eq. (36) has the
solutions of the following forms

cwj

ÿ
�aj �rj � �cj

� � c0
wj

ÿ
�rj
�
=
�������������
1ÿ �r2j

q
�
XM
m�1

C m
wj�p�T

ÿ
�rj
�
=
�������������
1ÿ �r2j

q
�37�

cjj
ÿ

�aj �rj � �cj
� � c0

jj

ÿ
�rj
�
=
�������������
1ÿ �r2j

q
�
XM
m�1

C m
jj�p�T

ÿ
�rj
�
=
�������������
1ÿ �r2j

q
�38�

Where �rj���rÿ �cj �= �aj, c
0
wj��rj � and c0

jj��rj � are continuous and bounded function on the interval �rjE�ÿ1, 1�,
�C m

wj�p� C m
cj�p�� are unknowns to be determined. M is selected to be large enough for obtaining the

solutions to the de®ned problem with a required degree of accuracy.
Once the unknown auxiliary function fwj��r� and fjj��r� are solved from (36), the interlaminar stress

and electric displacement are determined. Substituting the results into (16), then (10)±(12), we can obtain
the anti-plane mechanical displacement, electric potential. Using Eqs. (1)±(4), we can eventually obtain
the stress and electrical displacement in each layer. The intensities of dynamic stress and electric
displacement around the crack tip can be calculated as

ÿ
K �t

�
j
�
� �������������������������������

2
��cj ÿ aj � ÿ x

�q �
x4 �cjÿaj � ÿ

t�j � �x� � ÿ
1

2

�ÿ
�C44

�
jc

0
wj
� ÿ 1� � � �e15 �jc0

jj� ÿ 1�
� ����

aj
p �39�

ÿ
K �D

�
j
�
� �������������������������������

2
��cj ÿ aj � ÿ x

�q �
x4 �cjÿaj � ÿ

D�j � �x� �
��E11 �j
2

����
aj
p

c0
jj� ÿ 1� �40�

for left-hand side crack-tip, and
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ÿ
K �t

�
j
�
� �������������������������������

2
�
xÿ �cj � aj ��q �

x4 �cj�aj ��
t�j � �x� �

�ÿ
�C44

�
jc

0
wj
�1� � � �e15 �j

2
c0
jj�1�

� ����
aj
p �41�

ÿ
K �D

�
j
�
� �������������������������������

2
�
xÿ �cj � aj ��q �

x4 �cj�aj ��
D�j � �x� � ÿ

��E11 �j
2

����
aj
p

c0
jj�1� �42�

for right-hand side crack-tip.
After the solutions in Laplace transform plane are obtained, we must use inverse Laplace transform

to get the solutions in the time domain. Although there are a number of numerical methods, the one
used here is due to Durbin (1974). This method works with complex data, this has important
implications on the accuracy and e�ciency of the method as can be seen from comparison studies given
by Narayanan and Beskos (1982).

Referring to �KS� and �KD�j which denote the inverse Laplace transform of �K �S� and �K �D�j, the
energy release rates may compute by virtual crack close technique. For example, the energy release rates
for right-hand side crack-tip is

�G�t��j�
p
2

 
1ÿ

�C44

�
j

�KS �2j �
� �e15 �jÿ

�C44

�
j��E11 �j

�KS �j�KD�jÿ
1

��E11 �j
�KD �2j

!
�43�

where

fSS � �E11 �J=
h
�c44�J�E11 �J��e15 �2J

i
� �E11 �J�1=

h
�c44 �J�1�E11 �J�1��e15 �2J�1

i
�44�

fSD � �e15�J=
h
�c44 �J�E11 �J��e15 �2J

i
� �e15 �J�1=

h
�c44 �J�1�E11 �J�1��e15 �2J�1

i
�45�

fDD � ÿ�c44 �J=
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Fig. 2. Steady state electric displacement intensity factor and energy release rate versus crack length for center cracked PZT-5H cer-

amic under electrical load.
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3. Applications

In this section, we investigate the responses of some cracked piezoelectric medium. The ®rst problem
under consideration is a PZT-5H ceramic of height h with a center crack of length 2a � h: The shear
module c44, the piezoelectric constant e15 and the dielectric constant E11 for PZT-5H ceramic are 3.53 �
1010 N/m2, 17 C/m2 and 151� 10ÿ10 C/Vm, respectively. The mass density is denoted by r: To show the
validity of the present method, the e�ect of crack length on steady electrical displacement intensity

Fig. 4. Variation of stress intensity factor with time for center cracked PZT-5H ceramic under electrical load.

Fig. 3. Variation of stress intensity factor with time for center cracked PZT-5H ceramic under transient mechanical load.
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factors and energy release rate is plotted in Fig. 2. The results are same as that given by Shindo et al.
(Shindo et al., 1997).

Assume a sudden mechanical loading t0 applied on crack faces. It is found that the electric
displacement intensity factor is zero at the crack tip. Fig. 3 shows the variation of stress intensity factor
K s with time. The results are same as that for homogeneous material without piezoelectric e�ect. The
fact demonstrates that for homogeneous materials under mechanical loading, the piezoelectric e�ect has
no e�ects on stress intensity factor.

Assume a transient electric loading D0 applied on the crack faces. It is found that the dynamic stress
intensity factors are not zero and they are plotted in Fig. 4. When time t approaches to in®nite, the
steady stress intensity factors become zero. These results show that the stress and electric displacements
are coupled in the crack plane ahead of crack tip for transient electrical load.

In numerical procedure, we have truncated the in®nite series in Eqs. (37) and (38) to M terms. To
validate the numerical procedure, we study the convergence of results with respect to M. Consider a
transient electric loading D0 applied on the crack faces. In this case, the electric displacement intensity
factor does not vary with time and the steady state stress intensity factor is zero. The electric
displacement intensity factor K D and the peak stress intensity factor K s

max are tabulated in Table 1. It is
clear that as M increases, the result converges to some steady values.

The approach outlined in the foregoing section is employed to investigate the response of a smart
multilayered piezoelectric composite plate with two cracks. The specimen geometry and cracks positions
are shown in Fig. 5. The interlayer material is graphite/epoxy composite of height h/2. The outer layer
materials are PZT-G1195N piezoelectric ceramics of height h/4. The shear module, piezoelectric constant
and the dielectric constant for PZT-G1195N are �C44�p � 2:42� 1010 N/m2, �e15�p � 6:5 C/m2 and
�E11�p � 153� 10ÿ10 C/Vm, respectively. For graphite/epoxy, there is no piezoelectric e�ect, the shear
module are (C44)g = 0.71 � 1010 N/m2. The mass density for two materials are 7600 and 1600 kg/m3,
respectively.

As mentioned in the foregoing sections, the mechanical boundary conditions have no in¯uence on
interfacial electric displacement. Assume a sudden uniform t0 is applied on crack faces. The results show
that the electric displacement intensity factors are zero at any time t. Figs. 6 and 7 show the variation of

Table 1

The convergence of results with respect to M�a � h�

M = 5 M = 9 M = 13 M = 17 Mr21

K D=D0

���
a
p

1.849 1.431 1.390 1.379 1.377
e15
C44

K s
max

D0

��
a
p 0.588 0.403 0.364 0.362 0.361

Fig. 5. Model of piezoelectric plate with attached graphite/epoxy patches.
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stress intensity factors (SIF) and energy release rate with time t (in which, Cp and �C44�p are respectively,
the shearing wave velocity and the shear module of PZT-G1195N material).

When the piezoelectrics is sudden loaded electrically, the electric displacement intensity factor does
not vary with time, while the stress intensity factors are not zero (even for steady state case when t
approaches in®nite) as shown in Fig. 8. This means that the inertia e�ect has no in¯uence on electric
displacement ahead of the crack tip under electrical loading, the stress and electric displacements are
coupled in the crack plane ahead of the crack tip for non-homogeneous piezoelectric medium.

Fig. 6. Variation of stress intensity factor with time for multilayers piezoelectrics under transient mechanical load.

Fig. 7. Variation of energy release rate with time for multilayers piezoelectrics under transient mechanical load.
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4. Summary

Multilayered medium is very attractive to engineering application. This paper analyzed the
electrocmechanical response of ®nite cracks in multilayered piezoelectrics. The problem is to compute
the transient stress intensity factors and electric displacement intensity factors. Laplace and Hankel
transforms are used to reduce the mixed boundary value problems to a system of singular integral
equations, which are solved numerically. From the numerical example we found that the electric±
mechanical ®elds in the crack plane ahead of the crack tip have the following behaviors.

1. Under mechanical loading, the stress ®eld and electric displacement ®eld are un-coupled either for
homogeneous piezoelectric medium or for inhomogeneous piezoelectric medium.

2. Under electrical loading, the transient stress ®eld and electric displacement ®eld are coupled either for
homogeneous piezoelectric medium or for inhomogeneous piezoelectric medium.

3. Under electrical loading, the steady state stress ®eld and electric displacement ®eld are un-coupled for
homogeneous piezoelectric medium but coupled for inhomogeneous piezoelectric medium.

4. The inertia e�ect has no in¯uence on electrical displacement intensity factor.
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